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Abstract
We introduce a lattice gas model for the merging of two single-lane automobile
highways. The merging rules for traffic on the two lanes are deterministic, but
the inflow on both lanes is stochastic. Analysing the stationary distribution
of this stochastic cellular automaton, we find a discontinuous phase transition
from a free-flow phase which depends on the initial state of the road to a
jammed phase where all memory of the initial state is lost. Inside the jammed
phase we identify dynamical phase transitions in the approach to stationarity.
Each dynamical phase is characterized by a fixed number of relaxation cycles
which is decreasing as one moves deeper into the jammed phase. In each cycle
step, the number of ‘desperate’ drivers who force their way onto the main road
when they reach the end of the on-ramp increases until stationarity.

PACS numbers: 05.70.Ln, 02.50.−r, 45.70.Vn, 89.75.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper, we introduce and investigate an agent-based mathematical toy model for traffic
flow in a setting where a road merges with a motorway or other major thoroughfare. Common
sense (and everyday experience) tells us that a traffic jam occurs when the incoming flux
of cars is too large. This phenomenon has been investigated quantitatively using detectors
on German motorways. Theoretical analysis of the empirical data [1] suggests that even
though congested traffic has rather intricate properties [2], the emergence of traffic jams can
be explained in terms of a non-equilibrium first-order phase transition of a kind which had
previously been observed in the totally asymmetric simple exclusion process (TASEP) with
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Figure 1. Cartoon picture and lattice representation of an extended on-ramp (lower road segment)
merging with a highway (upper road segment). The traffic direction is from left to right. The
two-lane segment is labelled by the integers 0, 1, . . . , L. Injection onto the on-ramp is marked by
the circle. The incoming highway is described by the negative integers Z

− and the outgoing part
by the integers �L + 1.

open boundaries [3, 4]. Later this phenomenon was argued to be generic for driven lattice
gas models [5] and very recently it was proved rigorously on hydrodynamic level for certain
attractive interacting particle systems [6]. This link between microscopic agent-based models
defined on a lattice and a continuum description (as in Lighthill–Witham theory [7]) makes the
behaviour of traffic flow interesting also from a statistical physics and a probabilistic point of
view.

In the study of vehicular traffic by interacting particle systems [8, 9], the road is discretized
into segments and the particles hopping on such a lattice in discrete or continuous time
represent the motion of cars. Very often exclusion rules are considered where each lattice site
can accommodate at most one particle, i.e. a single site represents a road segment of the length
of a typical car. In [10, 11] coupled TASEPs with open boundaries are used to describe a
junction where one road meets another road at some lattice site, giving rise to a variety of
stationary traffic phases that can be deduced from the behaviour of the standard single-lane
TASEP. In [12–14] particles are injected at single lattice sites of a long lattice to describe the
effect of an on-ramp of the length of a single car. Other work [15–20] considers extended
on-ramps as we do here. However, all previous work focuses on metastability or stationary
behaviour. Relaxation phenomena which may occur as a result of a rapid change of traffic
conditions have not yet been studied within the lattice gas approach.

Since we are interested in generic features of the large-scale behaviour that emerges from
‘microscopic’ interaction rules between particles, we keep our mathematical model as simple
as possible. In line with the agent-based cellular automaton (CA) approach to traffic flow, we
define a cellular automaton where the dynamics on the infinitely extended single-lane main
road are those of Wolfram’s deterministic CA184 [21]. The on-ramp is represented by one
lane of a two-lane road segment of L sites, see figure 1 for illustration. The lane-changing
rules are asymmetric and inspired by, but different from those of the deterministic two-lane
CA named TL184 [22].

It is clear that a fully deterministic description of the motion of cars cannot capture the
effect of inevitable fluctuations in the inflow of cars on a real highway. Thus, our CA is
made stochastic by introducing random initial conditions and one stochastic boundary at the
entrance of the on-ramp (random inflow from the secondary road). This stochastic CA (SCA)
is described in detail in the following section. Our goal is to investigate how the inflow from
the secondary road through the on-ramp causes traffic jams, assuming that initially the main
road is in a free-flow state. We study the phase diagram, i.e. the dependence of the stationary
current and traffic density on the input rate of particles and initial occupation on the main road
in the thermodynamic limit L → ∞. Moreover, we investigate for large, but finite system
size how stationarity is approached if initially the on-ramp is empty. We obtain the following
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two main results. (i) There is a phase transition from a free-flow phase to a jammed phase for
sufficiently large inflow. (ii) There are dynamical phase transitions inside the jammed phase.
Each dynamical phase is characterized by a fixed number of relaxation cycles through which
the system approaches stationarity.

For the derivation of our results we use heuristic hydrodynamic arguments, based on the
law of large numbers in the thermodynamic limit of large L. In order to demonstrate what
bearing asymptotic results may have for finite systems, we also present Monte Carlo simulation
data obtained from single realizations of the process on lattices of size L = 100.

Since some properties of our model are inherited from CA184, we first review in the
following section its definition and some rigorously established results. Then we present our
model and the initial states we are interested in. In section 3, we derive the phase diagram. In
section 4, we discuss the relaxation process and present Monte Carlo simulation results. We
conclude in section 5 with some comments on our results and various related open problems
that deserve further research.

2. The SCA on-ramp model

2.1. A very brief review of CA184

In order to facilitate the definition and discussion of our model, we collect here some results
on CA184 which is defined as follows. Each site on Z is occupied by at most one particle
(exclusion principle). The particle evolution is in discrete time {1, 2, . . .} such that each
particle that has a vacant site to its right is first marked. Then (in the same time step) each
marked particle jumps one lattice unit to the right [21], and the mark is removed. This
operational definition, useful for computer implementation of the dynamics, is equivalent to
saying that in each time step each particle that has a vacant site as its right neighbour jumps
one lattice unit to right.

Let a particle distribution on Z be translation invariant (i.e. the distribution does not
change, if it is shifted along Z) and let it either have no neighbouring particles or have no
neighbouring vacancies. Then, in both cases, this distribution is also time invariant for CA184.
We shall refer to time-invariant distributions as stationary distributions; for details see e.g.
[23, 24]. At particle densities up to 1/2, the system is said to be in the free-flow phase since
each particle moves at each time step due to the absence of particle pairs. At densities larger
than 1/2 the system is said to be in the congested phase, since in any large enough region there
are always some particles that cannot move in a given time step.

Let us denote by j (ρ) the particle current in a stationary distribution with particle density
ρ. It may be easily derived (for a formal proof see [22], although this result had been known
much before) that

j (ρ) =
{
ρ if ρ � 1/2
1 − ρ if ρ � 1/2.

(1)

This current–density relation, called fundamental diagram in traffic engineering, also plays a
crucial role for the discussion of our on-ramp SCA.

It is interesting to consider a non-translation invariant distribution where the left part of
the system is in the free-flow phase with density ρ− � 1/2 and the right part is in the congested
phase with density ρ+ > 1/2. It has been established in recent work that the transition point
from the free-flow region to the congested region can be defined and tracked on microscopic
lattice scale at all times [25]. At each time step, there is always a unique particle that may
be regarded as marking the end of a traffic jam which on a macroscopic scale corresponds
to a shock discontinuity. It connects the two domains with constant densities ρ1 and ρ2 and



11224 V Belitsky et al

0

0
0

0

L1a

L2a

L1b

0

0

0 0 0
0

000

1 1 1

1
1

1

1 1

1
1

* *
* * * *

* *
* * * *

* *
*

* *
*

* *
* *

* * *
* * *

* * *
*

* * *
*

* *
* *

* *
* *

L2b

# # # #

*

Figure 2. All allowed moves of a car (symbol 1) onto an empty site 0 as given by the rules R1
in lane 1 (top two figures L1-a, L1-b) and lane 2 (bottom two figures L2-a, L2-b). The asterisks
indicate unspecified occupation, on which the jump event does not depend. The pair of hashes
signifies that at least one of the two sites is occupied.

performs a random motion with average speed

vs = j (ρ−) − j (ρ+)

ρ− − ρ+
. (2)

This speed becomes deterministic in the hydrodynamic limit where the lattice spacing becomes
0 and the density and current become deterministic quantities. On a macroscopic scale this
result follows from particle conservation and is generally valid, provided a shock exists and
remains stable under the time evolution of the particle system. The existence of a microscopic
shock in CA184 motivates our use of it as a building block for an on-ramp traffic model.

On the other hand for ρ− > 1/2 and ρ+ < 1/2, an initial shock is not stable.
Instead, an intermediate domain with density 1/2 develops, with one discontinuity moving
deterministically (speed −1) to the left, and another discontinuity moving deterministically
(speed +1) to the right. Hence, the outflow from a congested regime into a free-flow regime
is maximal and the congested regime shrinks in size. A high-density downward shock with
ρ− > ρ+ � 1/2, however, does remain stable and travels with speed −1 backwards. Likewise,
a low-density downward shock with 1/2 � ρ− > ρ+ is stable and travels with speed +1
forward.

2.2. The main road and the on-ramp

With CA184 in mind we can define the SCA model for an on-ramp, see figure 1. The single-
lane main road is modelled by the set of integers Z. The on-ramp is represented by the set of
integers in the finite interval [0, L]. The integers of the main road, or simply highway or lane
1, are denoted by . . . ,−11, 01, 11, . . . . The integers of the on-ramp or lane 2, will be denoted
by 02, 12, . . . , L2. Cars are modelled by particles satisfying the exclusion principle (at most
one particle per site). Their motion is defined by dynamical rules for the particle evolution
on the sites of lanes 1 and 2, as given below. We shall refer to the set (L + 1)1, (L + 2)1, . . .

as the outgoing lane (or highway) and to the negative integers Z
−
1 as the incoming lane (or

highway).

2.3. Cars and their motion

The rules for particle motion in our present model are illustrated in figure 2 where all
possibilities in which a car can move are shown. In the following precise description, the rules
(L1-a,b) mimic cars on the main road. Each car advances if there is no other car in front of
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it (rule (L1-a) as in CA 184). Cars do not slow down to let space for a car from the on-ramp
to enter the main road, except at the end of the on-ramp (rule (L1-b)). The rules (L2-a,b)
mimic the behaviour of cars that have entered the on-ramp. Each of these cars prefers to enter
the main road as soon as possible, rather than to advance along the on-ramp. However, this
happens only if it does not prevent the free motion of cars on the main road. Otherwise, the
car will keep moving along the on-ramp obeying the CA 184 exclusion principle (rule (L2-a)).
When a car has reached the end of the on-ramp, it becomes ‘desperate’ and changes to the
main road even though this change may force a car on the main road to brake (rule (L2-b)).

More precisely, these rules may be stated as follows.

(R1) (Particle jumps) Particles change their positions at times 1, 2, . . . according to the
following rules.

(L1-a) If there is a particle at time t − 1 at a site i1 �= L1, then it checks whether the site
(i + 1)1 is empty at time t − 1, and if yes, it will jump to (i + 1)1 at time t; otherwise,
it will stay at i1 at time t.

(L1-b) If there is a particle at time t − 1 at the site L1, then at time t it will jump to (L + 1)1

provided at time t − 1 both sites (L + 1)1 and L2 are free of particles, otherwise, it
will stay at L1.

(L2-a) If there is a particle at a site i2 �= L2 of lane 2 at time t − 1, it checks whether the
sites i1 and (i + 1)1 are empty at time t − 1; if yes, it will jump to (i + 1)1 at time t.
Otherwise, the particle checks whether the site (i + 1)2 is empty at time t − 1; if yes,
it will jump to (i + 1)2 at time t, otherwise, it will stay at i2 at time t.

(L2-b) A particle that is at the site L2 at time t − 1, checks whether the site (L + 1)1 is empty
at time t − 1. If yes, it jumps to (L + 1)1 at time t, otherwise it keeps its position at
time t.

(R2) (Particle input) A new particle may appear on the on-ramp at 02 at each time 1, 2, . . .

according to the following stochastic rule: if there is no particle at time t − 1 at site 02,
then a new particle will appear at this site at time t with probability p2.

The real number p2 ∈ [0; 1] is one of the model’s parameters.

2.4. The initial particle configuration

In order to complete the description of the model, we specify the initial distribution of particles.
We recall that our goal is to investigate how inflow onto the on-ramp causes traffic jams. This
suggests that the model should be considered starting from the moment when the first particle
enters the on-ramp. Accordingly, we assume that lane 2 is totally free of particles at time 0.
Moreover we assume that there are no traffic jams initially on the main road; hence particles
are put at time 0 on lane 1 with density ρ � 1/2 according to the following rule: the particle
distribution is translation invariant and the number of vacant sites between particles are
independent random variables 1 + X, where X is a geometric random variable with parameter
p1 (i.e. P[X = k] = p1(1 − p1)

k, k = 0, 1, 2, . . .). The real number p1 ∈ (0; 1) is the second
parameter of the model. The invariance with respect to translations and the minimal gap size
1 between consecutive cars ensure that this distribution models a stable free car flow on the
main road in the absence of the on-ramp. In terms of p1, we have

ρ = p1

1 + p1
. (3)

The geometric gap size distribution is chosen for convenience in both numerical and rigorous
treatments of the problem. We believe that the phase transition discussed below would occur
for any X with finite mean.
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3. Phase diagram

3.1. Microscopic consequences of the merging rules

The lane-changing rules along the on-ramp have several microscopic consequences that are
important for deriving the coarse-grained macroscopic behaviour.

(P1) Particle distribution on lane 1 after the on-ramp. If at any time t a particle jumps to
(L + 1)1 (independently, on whether it has come from lane 1 or lane 2), then it will be in a
free-flow phase at all times �t + 1. Thus, the most ‘dense’ configuration on the outgoing
lane {(L + 1)1, (L + 2)1, . . .} is the particle–hole interchanging configuration with density
ρ = 1/2 and current j = 1/2. If lane 1 has no vacancy pairs on all sites up to L1, then
this maximal-density state is realized on the outgoing lane.

(P2) Particle distribution on lane 2. All the particles at all times are almost in the free-flow
phase. Here the proviso ‘almost’ means that at each time t, there may be at most one
particle that cannot jump at time t. It may be at L2 (the end of lane 2) because its jump
may be blocked due to the presence of a particle at (L+ 1)1. However, this particle cannot
be blocked for more than one time step because of rule (L2-b). Alternatively, a blocked
particle may be at any other site of lane 2. If such a particle exists, it forms a particle
block of size 2, and therefore also cannot be blocked for more than one time step. Since
moreover a particle at a site i2 < L2 can be blocked only as the result of an alternating
particle–hole string trailing a blocked particle at L2 some time steps earlier, the region
of lane 2 to the right of this block at i2 is occupied by the particle–hole interchanging
configuration such that if L2 is occupied, then L1 + 1 is empty and vice versa. (For this
reason, no second blocked particle can be generated at L2 before the other blockage has
disappeared.) If a block of size two has two vacant sites as left neighbours, the block
disappears in the next time step and no blocked particles exist until a new blocked particle
may be generated at L2.

(P3) Lane change for high density on lane 1. If there are no vacancy pairs on lane 1 up to site
L1, then particles injected on lane 2 cannot move to lane 1 before reaching the end of
the on-ramp. The injection rule (R2) then generates gap sizes 1 + X between consecutive
particles, where X is geometrically distributed with parameter p2. The length of such a
random sequence is limited by a single block of size 2 as discussed in (P2).

Property (P2) implies that if the merging of the two lanes at the end of the on-ramp causes
a traffic jam, then this traffic jam will develop and propagate backwards on the main road—not
on the on-ramp. This is an interesting consequence of the behaviour of desperate drivers in
our model and the asymmetric lane-changing rule which forbids returning from the main road
onto the on-ramp. This property also allows us to truncate the on-ramp at the entrance to
the main road and describe the influx by a stochastic boundary, rather than modelling the full
secondary road by another infinite integer lattice with some random initial configuration of
particles.

The same free-flow property implies that in the limit of large L, there is a stationary inflow

α = p2

1 + p2
(4)

of particles onto the two-lane segment of the highway.

3.2. Stationary state

With these preparations, we are in a position to deduce the phase diagram of the on-ramp
model. To fix notation, we denote by ρin, ρ1,2, ρout the stationary densities in the various
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segments of the road. j with the corresponding subscript denotes the stationary current in the
respective segment as given by (1).

First we make some trivial observations. (i) Since initially lane 2 is empty, the particles
initially in the positive segment of lane 1 do not interact with any particle injected at positive
time. They disappear into the outgoing highway after at most L steps. Hence, we may delete
all particles which are on Z

+ at t = 0 without changing the long-time behaviour of the two-lane
segment. (ii) Because of the geometric initial distribution on lane 1 we may regard site 01 as
a source of particles entering the two-lane segment in the same fashion as site 02 is a source
of particles for lane 2, as long as no back-moving traffic jam blocks the hopping of a particle
from −11 onto 01. (iii) Any blocking of the forward motion of any particle may occur not
earlier than after L steps, when the first injected particle may have reached the end of the
on-ramp. Hence initially (at least up to time L) there is a free inflow of particles into the
two-lane segment with total current j0 = ρ + α.

Now note that the two-lane segment with stationary currents j1,2 on each lane cannot
support a stationary current j := j1 + j2 larger than 1/2 since stationarity requires

j1 + j2 = jout. (5)

The current jout of the outgoing lane 1 is limited by 1/2 since this is the maximal current that
CA184 can support. Hence for ρ + α > 1/2, a traffic jam must develop on lane 1 that moves
backwards and eventually reaches site 01. Then it may block further input and eventually
generate a stationary situation. It is therefore clear that for ρ + α > 1/2, the initial free-flow
situation is unstable and the stationary system is in a congested phase. Hence, the first task
at hand is to determine whether the initial free-flow scenario ρ + α � 1/2 is stable and to
determine the stationary densities ρ1,2 as a function of the system parameters. It is convenient
to describe the phase diagram in terms of α and ρ rather than p1 and p2. We shall rely heavily
on hydrodynamic arguments in terms of mass transport by stationary currents. Corrections
vanishing in system size L are ignored in the following discussion.

First we investigate the behaviour at the beginning of the on-ramp, assuming L = ∞. A
particle that has entered the on-ramp on site 02 will move onto lane 1 according to rule L2-a,
i.e. provided both sites 01 and 11 are empty. The distribution of particles on lane 1 is geometric
as described above and uncorrelated with the injection of particles. Elementary computation
then gives the probability Y1(00) to find two neighbouring vacant sites on lane 1 (and hence
the jump probability of a particle that has just been injected) as

Y1(00) = p1

1 + p1

∞∑
n=1

np1(1 − p1)
n = 1 − p1

1 + p1
. (6)

In terms of the particle density, this can be written as Y1(00) = 1 − 2ρ for ρ � 1/2.
For an infinite on-ramp the law of large numbers then guarantees that with the given initial

distribution on the incoming highway, a fraction 2ρ of all injected particles will remain on
lane 2. Anticipating the discussion of the dynamics given in the following section we extend
this argument to the stationary distribution and replace the initial value ρ by the (as yet
unknown) stationary density ρin, provided that ρin � 1/2. For ρin > 1/2, no injected particles
can move from lane 2 onto lane 1 before reaching the end of the on-ramp. Since the probability
to have a particle on site 02 is α by definition, we conclude that

ρ2 =
{

2αρin for ρin � 1/2
α for ρin > 1/2

(7)

is the stationary density on lane 2. The corresponding stationary current on lane 2 is then



11228 V Belitsky et al

given by

j2 = ρ2. (8)

Since lane 2 is always in the free-flow phase (property (P2)), we expect that these expressions
also remain valid up to finite-size corrections (due to fluctuations) for an ensemble of large,
but finite systems.

The next step is to determine the stationary density on lane 1. For sufficiently low ρ

and α, the particles that initially move from lane 2 to lane 1 after injection keep lane 1 in
the free-flow phase. Its current is given by the sum of the incoming current ρin = ρ and
the added current (1 − 2ρ)α, contributed by the particles coming from lane 2. We argue
that this sum is the stationary current j1 on lane 1 (and correspondingly j2 = 2αρ is the
stationary current on lane 2) as long as α + ρ = j1 + j2 = jout � 1/2. This free-flow
scenario is stable because even though a blocked particle that may be generated at the end
of the on-ramp leads to a back-moving traffic jam, this traffic jam dissolves quickly. It has
only a finite average length (not scaling with the system size), since a growth of a congested
domain with density ρjam � 1/2 over a macroscopic region cannot be sustained by the
incoming flux of particles, except as a result of a rare fluctuation. To create a macroscopic
jam of length xL (where 0 < x � 1), a number of (ρjam − ρ1)xL excess particles have
to be carried into the system during O(L) time steps. However, such a fluctuation in the
influx is exponentially improbable in L; see property (P3) combined with the fact of the
geometric initial distribution on lane 1. Hence, the entire system (with the possible exception
of a fluctuating congested segment of a finite average size) is in the free-flow phase if
α + ρ � 1/2.

Assume now α + ρ > 1/2. Recall that according to (P2) lane 1 must be congested, i.e.
have density ρ1 > 1/2. By (P1) this implies an outgoing stationary current jout = 1/2, and
stationarity then gives j1 = 1/2 − j2 with density ρ1 = 1 − j1 = 1/2 + ρ2. Moreover, a traffic
jam on lane 1 with a congested region of density >1/2 moves backwards into the incoming
lane, see (2). Hence ρin = ρ1.

With (7) this gives the full dependence of the stationary densities of the two-lane segment
as a function on the system parameters as follows.

(i) Free-flow phase α + ρ � 1/2:

ρin = ρ (9)

ρ1 = α + ρ − 2αρ (10)

ρ2 = 2αρ (11)

ρout = α + ρ. (12)

The total stationary current is the sum of the two input currents, j = α +ρ. The stationary
currents in the individual road segments follow from (1).

(ii) Congested phase α + ρ > 1/2:

ρin = 1/2 + α (13)

ρ1 = 1/2 + α (14)

ρ2 = α (15)

ρout = 1/2. (16)

The total stationary current is maximal, j = 1/2; the stationary distribution does not
depend on the initial density ρ.
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4. Dynamical phase transitions in the congested phase

4.1. Microscopic and hydrodynamic description of boundary-induced phase transition in
single-lane CAs

As an introductory note to the dynamical analysis of the stationary phase diagram of the on-
ramp model, we recall some properties of single-lane SCAs with L sites and open boundaries
where particles are injected (left boundary) and extracted (right boundary), according to
some stochastic rules. We assume these boundary dynamics to be chosen such that particle
injection creates a growing free-flow segment of density ρ− in an initially empty semi-infinite
chain extending from site 1 to + infinity. The extraction mechanism is chosen to generate
a growing congested segment of density ρ+ in an initially full semi-infinite chain extending
from −∞ up to site L. Such SCAs have first been studied in [26] and subsequently by other
authors [27–30]. Two-component generalizations were considered in recent work [31, 32].
Interestingly, the current–density relation (1) arises also in the CA with sublattice parallel
update studied rigorously in considerable detail in [26]. Further analysis reveals the following
properties which we also expect to be valid for CA184 with suitably chosen open boundaries,
and indeed (except for the details of the current–density relation) also for stochastic time-
evolution schemes for totally asymmetric simple exclusion processes [33].

Consider an initial shock distribution with densities ρ± such that its distribution is
stationary except close to the shock position. For sufficiently large L, a suitably defined
shock marker [25] then performs a biased random motion until it hits one of the boundaries.
The average speed vs of the shock follows from (2). Its sign has its origin in the balance of
the currents j− = ρ− of particles entering at the left boundary and j+ = 1 − ρ+ of particles
leaving the system at the right boundary.

For j− > j+ (corresponding to ρ− > 1 − ρ+) the incoming flux brings (on average)
more particles into the system than the outgoing flux can remove. Hence, the number of
particles in the system grows and the shock moves to the left. When the shock reaches the
boundary, it reduces the incoming microscopic flux for some finite time because once in a
while injection attempts are rejected due to the enhanced probability of finding site 1 occupied.
This reduced influx causes the shock to drift away from the boundary to the right. However, as
soon as this happens, particles flow in again unhindered, driving the shock again back towards
the left boundary. In order to allow for the shock to move a large distance k forward into
the bulk, it is necessary that there is an excess of vacancies (either enhancing the flux in the
high-density branch of the shock or reducing the flux in the low-density branch) such that vs

can be positive for a sufficiently long time. The probability of generating such an excess of
vacancies (compared to the average) is exponentially small in k. Therefore, the probability of
finding the shock marker in the bulk decays exponentially in its distance from the boundary.
Consequently for large L, the expected number of particles in the system is ρ2L. The system
is in a high-density regime, determined by the outflow at the right boundary.

Conversely, if j− < j+, the incoming flux cannot compensate the loss of outgoing
particles at the right boundary and the shock moves left. Similar arguments lead to the
conclusion that for large L, the expected number of particles in the system is ρ−L. Hence,
the system is in a low-density regime governed by the influx at the left boundary. This may
be summarized in the following expression for the bulk density ρ in the thermodynamic limit
L → ∞:

ρ =
{
ρ− for ρ− < 1 − ρ+

ρ+ for ρ− > 1 − ρ+.
(17)

Since there is a discontinuous change of the stationary bulk density, we say that there is
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first-order non-equilibrium phase transition. Formula (17) defines the phase diagram in the
two-dimensional parameter manifold.

This heuristic dynamic discussion of the phase transition implies properties of the
stationary distribution which are proved rigorously both for the original sublattice CA in
[26] and later also for CA184 with open boundaries [27, 28]. We wish to stress that our
reasoning relies on the existence of a microscopic shock (which is proved for CA184 in [25]),
but is otherwise essentially hydrodynamic in nature.

On the coarse-grained hydrodynamic level, the phase transition detailed above may be
rephrased as follows. One defines a coarse-grained density as a space average over a suitable
chosen region around the lattice site k that becomes infinite in the limit a → 0 of vanishing
lattice spacing a, but is only a point x = ka on a macroscopic scale. In this limit, the particle
distribution on the lattice is described by density profile ρ(x, t) in continuous space. The
lattice of L sites becomes an interval [0, L′] ∈ R of a finite macroscopic length L′ = aL. The
particle densities introduced earlier somewhat loosely as space averaged (but still fluctuating
quantities) become deterministic because of the law of large numbers. To describe the
dynamics, one also rescales time and introduces a finite macroscopic time t ′ = ta. As a
consequence of taking the microscopic time to infinity, we may infer local stationarity at x
as long as we are a macroscopic distance away from any shock discontinuity. Hence in a
(macroscopic) point of density ρ, the corresponding current is j (ρ). To recover the phase
diagram discussed above, one considers an initial density profile with a shock located some
point x0 and applies arguments entirely analogous to those above. They yield the motion of
the shock and hence the phase diagram.

One can also consider an initially empty lattice, corresponding to ρ(x, 0) = 0. Then one
expects for CA184 up to t ′ = L′ an evolving step-function profile ρ(x, t) = ρ− for 0 < x < t ′

and ρ(x, t ′) = 0 for t < x < L′. The right boundary can support the current j (ρ−) = ρ−
in the approaching low-density domain provided that j (ρ+) > ρ−. If this is the case the
density remains stationary after t ′ = L′, in agreement with the prediction (17). Otherwise, a
back-moving shock of the form assumed above (with a high-density domain ρ+) evolves and
we are back at the previous discussion which leads to (17).

4.2. Relaxation of the on-ramp model in the free-flow phase

Hydrodynamic theory provides the key notions required for analysing the asymptotic properties
of the on-ramp model. In order to describe the relaxation process from the initial condition,
we now use the hydrodynamic description introduced above. In order not to burden notation
with primes whenever reference to the length of the on-ramp or time is made, we drop the
primes and from now on take L and t to be rescaled macroscopic quantities, unless otherwise
stated. In the initial state, the density on lane 1 is given by ρ1(x, 0) = ρ. On lane 2, we have
ρ2(x, 0) = for 0 � x � L. Outside this range, ρ2(x, t) is not defined.

Under hydrodynamic scaling, the initial lane-changing process takes place at x = 0 and
leads to the following initial stage of the time evolution. For a pictorial presentation, see
figure 3.

(1) Loading stage 0 < t < L. During this time interval, the flux into the two-lane segment
from the incoming highway is j0 = ρ and the flux from the on-ramp is α. Hence, a
forward-moving step-function wave penetrates lane 2 due to injection at x = 0. According
to (6), lane change induces a similar wave on lane 1 such that

ρ1(x, t) =



ρ x < 0
α + ρ − 2αρ 0 < x < t

ρ t < x

(18)
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Figure 3. Schematic picture of the relaxation process under hydrodynamic scaling in the free-flow
regime. In the initial loading process up to time t = L, lane 2 is filled and a density wave is induced
on lane 1 due to lane changing at the beginning of the on-ramp (a). For t > L the two-segment is
stationary and the density wave proceeds indefinitely on the outgoing lane 1 (b).

and

ρ2(x, t) =
{

2αρ 0 < x < t

ρ t < x < L.
(19)

Note that the total flux α + ρ inside the forward-moving density wave, i.e. inside the
domain 0 < x < t , matches the total incoming flux as required by local stationarity away
from the density discontinuity.

(2) Stationary regime t > L. When the forward-moving wave hits the end of the on-ramp,
nothing special occurs on a hydrodynamic scale. Microscopic-congested regions that
may appear for a finite time vanish under hydrodynamic scaling. The complete two-lane
segment becomes stationary. The evolution is given by

ρ1(x, t) =




ρ = ρin x < 0
α + ρ − 2αρ = ρ1 0 < x < L

α + ρ = ρout L < x < t

ρ t < x

(20)

and

ρ2(x, t) = 2αρ = ρ2. (21)

In the limit t → ∞, the entire highway is stationary.

4.3. Relaxation cycles in the congested phase

The relaxation process in the congested phase is far more subtle. The novelty is the back-
moving traffic jam that develops on lane 1 around microscopic time t ≈ L. To get some
insight, we return briefly to a microscopic description of the dynamics in two special limiting
cases where either the initial distribution (case a) or the injection (case b) is deterministic.

(a) Suppose that ρ = 1/2, i.e. lane 1 is initially half-filled (alternating particle-vacancy
sequence). According to property (P3) any particle injected on lane 2 will eventually
move onto site (L + 1)1 of the main road, causing the particle on L1 to break. Hence, the
stationary density on lane 2 is ρ2 = α � 1/2 and the current is j2 = α.

The stationary density on lane 1 may be derived by employing the following tools.
(1) We tag all particles injected on lane 2 and call them red particles (as opposed to
‘black’ untagged particles initially on lane 1). (2) When a black particle becomes the
left neighbour of a red particle, the two particles immediately (in the same time step)
exchange their position. Note that when removing the colours, these rules are equivalent
to the original rules (R1).



11232 V Belitsky et al

Let us now assume an injected particle to have reached at time t − 1 the end of the
on-ramp L2 such that L1 is also occupied (and therefore L1 + 1 is vacant). Hopping onto
lane 1 from lane 2 at the end of the on-ramp creates at time t a blocked red particle at L1

and a black particle at L1 + 1. The colour exchange is equivalent to saying that the black
particle moves onto (L + 1)1, while the red particles moves onto L1.

In the next time step t + 1 the red particle on L1 generates a red–black particle pair
on (L − 1)1, L1 because of the oncoming black particle on lane 1 which interchanges
position with the blocked red particle which was on L1 at time t. It is now easy to see
that the outgoing lane remains at density ρout = 1/2 with alternating black particles and
vacancies. The current jout = 1/2 is maximal. Any red particle that reaches L2 jumps
onto L1 and then travels backwards along lane 1 with deterministic shock speed vs = −1,
since in each time step it is reached from behind by a black particle.

Therefore all particles entering lane 2 at the entrance point 02 end up in lane 1, filling it
with a traffic jam moving backward. The density of red particles inside the jam is α; they
are geometrically distributed. Hence, the vacancies inside the jam are also geometrically
distributed. The leftmost red particle which marks the end of the traffic jam may be
defined as the microscopic position of the shock [25]. Its speed is −1, in agreement with
the general hydrodynamic result (2). The emerging congested domain eventually covers
the entire lane to the left of L1. The stationary density in this domain is ρ1 = 1/2 + α

and the current is according to (1) j1 = 1/2 − α. The system is in the congested phase as
predicted above. The time t∗ at which stationarity is reached is t∗ ≈ 2L. The approximate
sign becomes the random time t ≈ L at which the traffic jam on lane 1 is created.

(b) Next we consider α = 1/2. There is no need to introduce colours. It is easy to see that a
fully occupied lane 1 up to site L1 and the alternating particle-vacancy configuration on
lane 2 and on the outgoing lane 1 are stationary. The system is in the congested phase.

From this description, however, it becomes by no means clear how the stationary state is
reached in case (b). There is no reason to assume that for arbitrary ρ this happens after in
one step as in case (a), with a fully blocked domain evolving backwards when the first traffic
jam is formed. Instead, a more intricate sequence of relaxation cycles sets in as follows. We
return to the hydrodynamic description in terms of macroscopic space and time coordinates
and coarse-grained densities.

(1) Initialization. The first step in the approach to stationarity consists of two stages: (i) the
loading stage 0 < t < L and (ii) the development of a traffic jam during L < t < cL with
a constant c to be determined below. Initially, up to time t = L, nothing is different from
the free-flow case. The system is in the loading stage described by (18) and (19). As soon
as a stable back-moving traffic jam develops, the outflow onto lane 1 after the on-ramp
becomes maximal, see the brief review of CA184 in section 2.1, with the difference that
here the front of the congested region does not move backwards, but is stabilized at x = L

by the inflow of desperate particles coming from lane 2. Local stationarity in the vicinity
of the end of the on-ramp requires the flux jjam inside the evolving jam together with the
flux j2 = 2αρ on lane 2 to match the outgoing flux jout = 1/2. This yields

jjam = 1/2 − 2αρ, (22)

which implies for the density in the congested region

ρjam = 1/2 + 2αρ. (23)

Hence, the shock moves backwards with speed given by (2)

vinit = 1/2 − α − ρ

1/2 − α − ρ + 4αρ
. (24)
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This shock reaches the beginning of the on-ramp x = 0 at time t = L + L/|vinit| which
yields c = 1 − 1/vinit � 2. During the development of the traffic jam along lane 1 of the
two-lane segment, we therefore have

ρ1(x, t) =




ρ x < 0
α + ρ − 2αρ 0 < x < L + vinit(t − L)

1/2 + 2αρ L + vinit(t − L) < x < L

1/2 t < x

(25)

and

ρ2(x, t) = 2αρ. (26)

Therefore at the end t = cL of the initialization step, the densities of the two lanes are
ρ1(x, cL) = 1/2 + 2αρ and ρ2(x, cL) = 2αρ which is in contrast to the free-flow phase
where lane 1 is not congested. The initialization stages are illustrated in figure 4.

(2) Relaxation cycles tk < t < tk + 2L. When the jam reaches the beginning of the on-ramp,
the fraction of particles that move from lane 2 onto lane 1 after injection ceases to be
1 − 2ρ since the free-flow assumption with density ρ for lane 1 under which this was
derived is no longer valid. From this instant of time, a relaxation cycle sets in; see
figure 5 for illustration.

Each cycle has two stages, similar to the two previous initialization stages: (i)
readjustment of the free-flow density of lane 2 and (ii) readjustment of the congested
regime in lane 1. The incoming and outgoing lane segments do not change their state
during the relaxation cycles and are not discussed in detail below.

Stage (i) of cycle k, tk < t < tk + L. At the end of cycle k − 1, the system is in a state
similar to the end of the initialization stage (ii). The density on lane 2 adjusts itself to some
value ρ2(k). This value is determined by appealing to local stationarity, i.e. balancing the
current in the congested lane 1 such that the shock remains fixed (on a macroscopic scale)
at x = 0. Hence, a density wave develops on lane 2 and moves forward with speed +1
until it reaches the end of the on-ramp x = L at time tk + L. The total current coming
into the two-lane segment is the sum of the injection current α and jin, i.e. jtot = α + ρ.
Hence, stabilizing the shock position at x = 0 is achieved by adjusting

j1(k − 1) + j2(k) = α + ρ, (27)

such that the condition of vanishing shock velocity is satisfied. The density on lane 1
does not change during stage (i).

Stage (ii) of cycle k, tk + L < t < tk + 2L. When the density wave on lane 2 has
reached x = L, the desperate cars lead to further blocking and a new traffic jam in the
already congested lane 1 forms. This traffic jam moves backwards with speed −1 until it
reaches x = 0 at time tk + 2L. Then a new relaxation cycle sets in. Local stationarity at
the end of the on-ramp x = L requires that during stage (ii),

j1(k) + j2(k) = 1/2. (28)

For the respective densities (remembering that lane 1 is congested and lane 2 is free), this
yields

1 − ρ1(k − 1) + ρ2(k) = α + ρ (29)

1 − ρ1(k) + ρ2(k) = 1/2. (30)

Defining the initialization to represent the cycle number k = 0 with ρ1(0) = ρ1(cL) =
1/2 + 2αρ and ρ2(0) = ρ2(cL) = 2αρ, this recursion is readily solved by
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Figure 4. Initial stages of the evolution of the density profile for α = 1/2 in which case c = 2.
The two stages are defined inside each figure.

ρ1(k) = (α + ρ − 1/2)k + 2αρ + 1/2 (31)

ρ2(k) = (α + ρ − 1/2)k + 2αρ. (32)

Since the first cycle starts at t1 = cL, cycle k starts at time tk = L(c + 2(k − 1)).
For the density profiles along the two-lane segment during the relaxation cycle k this

gives during stage (i)

ρ1(x, t) = ρ1(k − 1) 0 < x < L (33)
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Figure 5. Relaxation cycle of the density profile for α = 1/2, following the initialization stages
shown in figure 4. The two stages of the cycle are defined inside each figure.

and

ρ2(x, t) =
{
ρ2(k) 0 < x < t̃k

ρ2(k − 1) t̃k < x < L,
(34)

where t̃k = t − tk is the elapsed time during cycle k. For stage (ii), we have

ρ1(x, t) =
{
ρ1(k − 1) 0 < x < 2L − t̃k

ρ1(k) 2L − t̃k < x < L
(35)
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and

ρ2(x, t) = ρ2(k) 0 < x < L. (36)

During stage (ii), L < t̃k < 2L. The evolution (33)–(36) during a cycle is illustrated
in figure 5 for α = 1/2. After the completion of both cycles, the density in both lanes
has increased. Correspondingly, the current in lane 2 has increased while in lane 1 it has
decreased.

(3) Approach to stationarity tk∗+1 < t < tk∗+1 + 2L. These cycles go on until the current
inside the congested region is so low that condition (27) cannot be satisfied any longer
with a new current (and hence density) on lane 2 that does not exceed the injection current
α. The stopping condition ρ2(k

∗ + 1) > α defines k∗ as the last cycle that is completed.
Inside the region of the phase diagram defined by

1

k∗ <
α + ρ − 1/2

α(1 − 2ρ)
<

1

k∗ + 1
, (37)

the number of relaxation cycles is k∗. Note that k∗ = 0 for

ρ > 1/[2(1 + 2α)]. (38)

Between this line in the phase diagram and the phase transition line α + ρ = 1/2, there is
an infinite family of dynamical phase transition lines at which the number of relaxation
cycles increases by 1. As the phase transition line is approached, this number diverges.
After cycle k∗ a final relaxation process sets in, again consisting of two stages, see
figure 6. In the case of k∗ = 0, the approach to stationarity (3) immediately follows the
initialization (1).

At the beginning of stage (i) of this final step a density wave with density α develops
on lane 2 and propagates forward with speed +1, i.e. no particles move onto lane 1 any
more at the beginning of the on-ramp. Therefore, at the same time t∗k+1, the shock at x = 0
is no longer stationary, but starts moving into the ingoing lane with speed

vtrans = 1 − ρ1(k
∗) − ρ

ρ1(k∗) − ρ
< 1. (39)

When the density wave on lane 2 has reached x = L, this lane has become stationary.
Then, at t = tk∗+L the second stage begins. A final shock is generated on lane 1 that
moves backward with speed −1 and brings lane 1 into its stationary state with density ρ1.
Full stationary of the two-lane segment is thus reached at t∗ = tk∗+2L.

For the density profiles along the two-lane segment, this gives during stage (i)

ρ1(x, t) = ρ1(k
∗) 0 < x < L (40)

and

ρ2(x, t) =
{
ρ2 0 < x < t̃k∗+1

ρ2(k
∗) t̃k∗+1 < x < L,

(41)

where t̃ = t − tk∗+1 is the elapsed time during the final relaxation step. For stage (ii), we
have

ρ1(x, t) =
{
ρ1(k

∗) 0 < x < 2L − t̃k∗+1

ρ1 2L − t̃k∗+1 < x < L
(42)

and

ρ2(x, t) = ρ2 0 < x < L. (43)

The approach to stationarity (40)–(43) is illustrated in figure 6 in the parameter range
where k∗ = 1.
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Figure 6. Approach to stationarity of the density profile for α = 1/2, following the relaxation
cycle shown in figure 5 The two stages of the approach are defined inside each figure.

After the relaxation time t∗, the shock moves further into the ingoing lane 1 with speed
−1 (figure 7). Eventually, it reaches the shock generated in stage 1 of the final step and
continues to move indefinitely along the incoming lane as a single shock with speed

vstat = 1 − ρ1 − ρ

ρ1 − ρ
. (44)

This coalescence of shocks in CA184 is analogous to the coalescence of shocks on the
hydrodynamic scale proved for the TASEP in [34]. After the initial loading stage, the
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Figure 7. Penetration of the traffic breakdown into the incoming lane, following the approach to
stationarity on the two-lane segment shown in figure 6 (top figures). (Bottom) Evolution of the
current in the two lanes during the complete evolution.

space-averaged current on lane 1 decreases monotonically in a non-analytic fashion.
Maximal injection α = 1/2 leads to a complete breakdown on the traffic on lane 1 up to
the end of the on-ramp (figure 7).

4.4. Simulation results

The results of the previous subsection are expected to be valid for an infinitely extended
highway in the limit of a large number of lattice sites for the on-ramp. Bearing in mind that for
traffic flow problems the natural lattice unit is the average length of a car the question arises
what significance these results may have for on-ramps of a finite lattice size L + 1. (Here
we return to microscopic lattice units.) We address this question by presenting snapshots of
Monte Carlo simulations for L = 100 at various times for various parameter values.

In order to make the infinitely extended mathematical toy model accessible to Monte
Carlo simulation, we have made the following modifications to the model.

(a) We eliminate from the consideration all the particles that are present at time 0 at the sites
of lane 1 to the right of 01.
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(b) When a particle jumps to (L+2)1, we eliminate it immediately from the model and declare
the site (L + 2)1 empty.

(c) We choose some value M and eliminate from the consideration all the particles that are
present at time 0 at the sites of lane 1 to the left of −M1.

(d) At each time t = 1, 2, . . . , we check whether −M1 was empty at time t − 1, and if yes,
we insert a particle in −M1 at time t with probability p1.

The first two modifications do not change the dynamics along the two-lane segment in any
way as discussed above. The last two modifications are an exact representation of the dynamics
of the original infinite model as long as no blocked particle is on −M1, which means that no
shock has reached this point of injection. This is not a serious limitation in practical terms
as a shock enters the ingoing lane with non-negligible probability only in the final relaxation
step of the congested phase, when the simulation is anyway stopped. The probability that
it happens earlier by a large fluctuation in the incoming current decays exponentially in M.
However, by analogy to CA184 with open boundaries, we do not expect even the presence of
the shock at the injection point to cause a qualitative change of the behaviour of the model
as long as |M1| is larger than the mean distance of the shock from the boundary (which is of
order 1 and not growing with L).

With a view on simulations it is convenient to study the space-averaged densities
ρi(t) := 1/L

∫ L

0 dx ρi(x, t). In the absence of relaxation cycles (38), the relaxation takes
place in four steps for which in the hydrodynamic limit one gets

ρ1(t) =




ρ + α(1 − 2ρ)t/L 0 < t < L

α + ρ − 2αρ + (α + ρ − 1/2)(t/L − 1) L < t < cL

1/2 + 2αρ cL < t < (c + 1)L

α(1 − 2ρ)(t/L − 1 − c) + 1/2 + 2αρ (c + 1)L < t < (c + 2)L

(45)

ρ2(t) =




2αρt/L 0 < t < L

2αρ L < t < cL

α(1 − 2ρ)(t/L − c) + 2αρ cL < t < (c + 1)L

α (c + 1)L < t < (c + 2)L.

(46)

Note that if all particles initially on Z
+
1 are deleted, then the constant ρ in the first stage of

ρ1(t) has to be replaced by ρt/L.
To study the relaxation mechanism, we measured the total number of particles

N2(t) =
L∑

i2=1

ni2(t) (47)

in lane 2 for L = 100. Each particle that has not immediately jumped to lane 1 after injection
remains on lane 2 until it reaches the end of the on-ramp. Therefore, all remaining particles
on the bulk part 1 � i2 � L of the on-ramp become desperate once a jam on lane 1 is
established (i.e. from stage 2 of the relaxation process onwards). Hence, the empirical density
ρ̃2(t) = N2(t)/L measures the increase in the number of desperate drivers which force their
way onto lane 1, causing more disruption of the flow there in each cycle. Data are given in
figure 8 for several randomly generated histories in the parameter range where k∗ = 1. N2(t)

has been averaged over a time window of ten time steps to reduce noise.
At the small lattice size L = 100, we do not expect the simulated data to be close

to the hydrodynamic limit as given in (45) and (46). We find it remarkable that even
though fluctuations are indeed strong, the cyclic structure of the relaxation is clearly visible in
individual histories of the process, i.e. without ensemble averaging.
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Figure 8. Monte Carlo simulation of the evolution of the empirical density ρ̃2(t) on the on-ramp
averaged over ten time steps versus time in units of ten steps, for L = 100, α = 1/2, ρ = 0.2.
Here k∗ = 1 and c = 2. The vertical lines mark the end of each relaxation stage. The lane saturates
at maximal density 1/2 around t = 500. Four randomly generated histories are shown.
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Figure 9. Monte Carlo simulation of the evolution of the empirical density ρ2(t) on the on-ramp
for L = 100, averaged over ten time steps versus time in units of ten steps. The vertical lines mark
the end of the first four relaxation stages. (Left) α = 1/2, ρ = 0.1. The lane saturates at maximal
density 1/2 around t = 900 corresponding to k∗ = 3. (Right) α = ρ = 0.3, corresponding to k∗ =
1 and c = 3.6. In (b) the horizontal line at ρ̃2 = 0.18 marks the constant hydrodynamic density
during the second stage of the loading phase; the line at ρ̃2 = 0.3 marks the stationary density.

Closer to the phase transition line, the number of relaxation cycles increases in the
hydrodynamic description. This is also reflected in finite chains as shown in figure 9(a) for α =
1/2, ρ = 0.1. This is the transition point from k∗ = 3 to k∗ = 4. In the history of the process
shown here, lane 2 relaxes at the time t = 900 corresponding to k∗ = 3. In some simulations
(not shown here), stationarity was not yet reached at this time. Also for noisy injection
with α < 1/2 some cyclicity remains recognizable despite strong noise, see figure 9(b).
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This structure disappears as one goes to smaller values of α and smaller distance from the
phase transition line.

5. Conclusions

The expected phase transition from free flow to the congested regime takes place when the
incoming initial currents of the main road and the on-ramp equal the maximal output current
of the main road. It is clear that a congested regime must exist when these two currents exceed
the maximal output current. That the transition occurs exactly when they balance each other
is a result of the microscopic lane-changing rules of the model.

The phase transition has novel interesting features. Inside the free-flow phase, the
stationary distribution depends on the initial density ρ of particles on lane 1. In the
congested phase, however, the memory of the initial distribution is lost. The stationary
densities depend only on the injection strength α. A series of dynamical transitions takes
place inside the congested phase. At these dynamical transition lines, the relaxation times
change discontinuously as a result of an increasing integer number of relaxation cycles. This
number diverges as the phase transition line to the free-flow phase is approached. These
relaxation cycles are reminiscent of the ‘triggered stop-and-go waves’ discussed in the far
more complex model of [2], but differ in that they do not persist, but drive the system into the
homogeneous congested traffic state.

Interestingly, recent work on a two-component deterministic lattice gas with stochastic
particle input at the system boundaries has also revealed relaxation cycles [31, 32]. In that
model with two species of particles, there is a phase transition associated with spontaneous
symmetry breaking. As the phase transition line is approached, the number of relaxation cycles
diverges. At this point this is just an observation with no obvious link, as the phase transitions
in these two models are rather different in nature. However, this coincidence suggests to
study the phenomenon of relaxation cycles in deterministic cellular automata with stochastic
boundaries under a more general perspective, e.g., by changing the microscopic lane-changing
rules of the present model and by considering more elaborate exclusion processes that include
next-nearest neighbour interaction [29, 35], varying intrinsic speeds [36] or slow-to-start rules
[37].

It is clear that real automobile traffic is more noisy, and hence no idealized cyclic behaviour
can be expected during the filling of a main road by inflow onto an on-ramp. In particular,
the deterministic rule L2-b, which prevents the occurrence of a traffic jam on lane 2, suggests
future work on a modified version of our model with a probabilistic analogue of rule L2-b and
also the inclusion of ‘rude’ drivers who already force their way onto lane 1 before they reach
the end of the on-ramp. The robustness of the cycles in the numerical simulation of our model
is nevertheless intriguing. It would be interesting to investigate real traffic under conditions of
sudden inflow onto an empty on-ramp in order to see whether flow patterns emerge that can be
interpreted as a noisy version of idealized relaxation cycles. The number of ‘desperate’ drivers
who manage to enter the main highway only at the end of an on-ramp could be a signature of
such behaviour.
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